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what is soliton?

Chris Eilbeck & Heriot Watt University 1995 
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why solitons?
• Linear systems: Maxwell equation, QM, linear 

response theory, Fourier transform....etc.

• Non-linear systems: Navier-Stokes equation, 
collective effects arising from interactions...

( Based on a linear formalism emphasizing 
superposition principle)

ρ

(
∂#v

∂t
+ #v ·∇#v

)
= −∇P + µ∇2#v + #f
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However, most theoretical approaches lies in linearzing 
the system and treat the non-linearity as perturbations.

The concept of 
“intrinsic analysis”
of non-linear system
lead to the discovery 
of strange attractor
and solitons.

why solitons?
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first discovery

“I was observing the motion of a boat which was rapidly 
drawn along the narrow channel.....the boat suddenly 
stopped- not so the mass of water in the channel.....it 
accumulated round the pow of vessel.... rolled forward with 
great velocity, assuming the form of solitary elevation.......
apparently without change of form or diminution of speed...”

John Scott Russell
(1808~1882)
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non-linearity?
A simple example is the pendulum chain including the 
non-linear higher order term. The final result for the 
amplitude factor in this system leads to the nonlinear 
Schrodinger equation(NLS).

i
∂ψ

∂t
=

[
−P

∂2

∂x2
−Q|ψ|2

]
ψ

Non-linearity would induce self-
modulation into wave packets.
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solution of NLS
It can be proved that for systems to have a localized 
soliton solution, the product PQ must be positive.

Veff (φ)

PQ > 0 PQ < 0
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solution of NLS
We look for a solution of the form                                
with the carrier wave     and envelope     have permanent
profiles.  

ψ(x, t) = φ(x, t)eiθ(x,t)

θ φ

Pseudo-potential argument and localized soliton solution
requirement leads to the final solution.

ψ=φ0sech
(

φ0

√
Q
2P (x− uet)

)
ei ue

2P (x−upt)
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in Solid State Physics?
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solitons in conducting polymers
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solitons in polyacetylene

the static model proposed in PRB in 1980
• Pi-electrons: the switching of pi electrons from one 

bond to another leads to the two states A and B.

• distortions of carbon chains: due to the bond 
length difference between sigma and pi bonds, the 
switching of pi electrons is coupled with the 
distortions of the lattice. 

H = Hσ +Hπ
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solitons in polyacetylene

these two trans-polyactelene
types are identical in geometry 
thus are energetically degenerate

if they coexist in one molecule,
defects, which is topological in 
nature, would appear in the 
connection between the two 
types.(topological soliton)

trans
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defectA B

about 7 unit cells

The distortion of the CH 
lattice is associated with 
the appearance of an 
electronic energy state 
which is localized around 
the soliton center.

By doping with a electron
doner,  the soliton can be 
viewd as a pseudo-particle 
with charge (-e) and S=0

neutral soliton charged soliton

16
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solitons in polyacetylene

H = Hσ +Hπ

=
∑

n

p2
n

2m
+

1
2
K(un − un+1)2

−
∑

n

[t0 − α(un+1 − un)](c†n+1cn + c†ncn+1)

Hamiltonian in dimerised picture

this tight-bonding description takes into account the 
non-linearity between contributions from two bonds.
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 band structure
assume the regular distortion                   , using the 
standard band theory calculation:

un = (−1)nu

E0(u) = 2KNu2 − 2
∫ π/2a

−π/2a
dk

Na

2π

√
4t20 cos2 ka + 16α2u2 sin2 ka

the band structure implies 
the validity of the dimerised 
picture for the ground state 
of polyacetylene.
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 excited state(soliton)
The study of the ground of the dimerised chain is twofold
degenerate. Associated with this degenercy, we expect 
there to exit an elementary excitation corresponding to a 
soliton.

H′ = A

∫ ∞

−∞
dξ

[
1
2

(
∂φ

∂τ

)2

+
1
2

(
∂φ

∂ξ

)2

+
1
4
(1− φ2)2

]

performing canonical transformation, we obtain a PDE 
having a soliton-like solution. Also, the soliton energy can 
be calculated by plugging the experimentally observed 
data( lies in the middle of bandgap).
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types.(topological soliton)
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.

defectA B The distortion of the CH 
lattice is associated with 
the appearance of an 
electronic energy state 
which is localized around 
the soliton center.

Can be visualized by the 
change in the density of 
state due to the presence of 
soliton.

∆ρ(E)
unity

1/2 missing1/2 missing
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 conduction mechanism

neutral soliton charged soliton

By doping with a electron
doner,  the soliton can be 
viewd as a pseudo-particle 
with charge (-e) and S=0

It could be calculated that the energy level associated 
with soliton is situated between CB and VB and is 
occupied by the defect (PI)electron. Thus neutral soliton 
carries no charge with spin 1/2(unpaired.)
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Solitons in BEC
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 BEC stability
Homogeneous BEC with purely contact interaction:
          repulsive (a>0): stable
          attractive(a<0): unstable

Being long range and anisotropic, the dipole-dipole 
interaction (DDI) changes the stability condition of the 
system.
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Figure 1 Intuitive picture of the trap geometry dependence of the stability of a
dipolar BEC. a,b, In an oblate trap (a), the dipoles mainly repel each other, whereas
in a prolate trap (b), the interaction is predominantly attractive.c, The different
trapping geometries are realized by the crossed optical dipole trap (red) and a
further one-dimensional optical lattice (green). The magnetic field is pointing along
the symmetry axis z of our traps.

obtained20,23, we adiabatically shape the trapping potential to the
desired aspect ratio l. To be able to vary l over a wide range, we
generate the trapping potential by a crossed optical dipole trap
(ODT) and a superimposed one-dimensional optical lattice along
the z direction (see Fig. 1c and Methods section).

We observe two effects when approaching the zero-crossing of
the scattering length: the BEC shrinks in both directions owing
to the decreasing scattering length and the ellipticity of the cloud
changes as a manifestation of the enhanced dipolar effects20. Finally,
when we decrease the scattering length below some critical value
acrit, the BEC atom number (determined from a bimodal fit24 of the
time-of-flight absorption images) abruptly decreases (Fig. 2a,b).
The disappearance of the BEC around the instability point is shown
in Fig. 2c. Although slightly above acrit, we still see an almost
pure BEC, for a ! acrit the density shows a bimodal distribution
(an anisotropic, dense central peak surrounded by an isotropic
gaussian cloud). Just below acrit, the BEC collapses and the density
distribution becomes a unimodal, isotropic gaussian. Note that we
do not observe the formation of soliton trains as in refs 15,16. This
can be attributed to the fact that as our trap is much tighter than
in those references, the initial size of our BEC is smaller than any
single soliton observed in refs 15,16.

The critical scattering length acrit where the condensate vanishes
depends strongly on the trap aspect ratio l. For an isotropic trap
(Fig. 2a), the collapse occurs at a ! 15a0, whereas the pancake-
shaped trap (Fig. 2b) can even stabilize a purely dipolar BEC
(a ! 0). We repeated this experiment for six different traps (see
Table 1), thereby covering a range of two orders of magnitude in the
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Figure 2 Decrease of the BEC atom number N around the critical scattering
length acrit. a,b, The critical point depends strongly on the aspect ratiol of the trap.
The solid lines are fits to equation (2) used to determine the critical scattering length
acrit (see text). c, Typical images of the atomic cloud around the critical scattering
length for the trap with l = 10.

Table 1 Trap frequencies and aspect ratios of the traps used. The trap frequencies
were measured by either exciting the centre-of-mass motion or parametric
heating and are accurate to about 10%. Traps 1–3 are provided only by the
crossed optical dipole trap, whereas for traps 4–6 the horizontal dipole trap beam
and the optical lattice are used.

Trap ωr/ (2π ) (Hz) ωz/ (2π ) (Hz) ω̄/ (2π ) (Hz) l = ωz/ωr

1 1,300 140 620 0.11
2 890 250 580 0.28
3 480∗ 480 480 1.00
4 530 1,400 730 2.60
5 400 2,400 730 6.00
6 330 3,400 720 10.00
∗Trap 3 is not cylindrically symmetric (see the Methods section) and has the trap frequenciesωx = 2π×610Hz and
ωy = 2π×370Hz.

trap aspect ratio l. To exclude three-body loss processes causing the
abrupt decrease in the BEC atom number, we measured the lifetime
of the BEC for the different traps just above acrit and found the same
lifetime (∼10 ms) for the different scattering lengths.

By fitting to the observed BEC atom numbers (Fig. 2a,b) the
threshold function

N = max
[
0,N0(a−acrit)

β
]
, (2)

nature physics VOL 4 MARCH 2008 www.nature.com/naturephysics 219

Vtrap =
1
2
m(ω2

rr2 + ω2
zz2)

Nature Phys. 4, 218(2008)
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(a) dipoles repel each other:
      BEC stable

(b) dipoles attract each other:
      dipolar collapse

pancake
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 solitons in BEC
Consider a 3D cigar shape condensate confined in a 
trap with aspect ration <<1. We can map the GP 
equation into a 1D effective one which has the form of 
NLSE.

[
i

∂

∂τ
+

1
2

∂2

∂s2
+ Q|ψ(s, τ)|2

]
ψ(s, τ) =

1
2
λ2s2ψ(s, τ)

This equation admits a soliton-like solution, however, for 
larger dimension, NLSE does not allow for such a 
solution.
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 solitons in BEC
Repulsive interaction(a>0): dark or grey soliton

Attractive interaction(a<0): bright soliton

ψ(s, τ) = A0 tanh(A0

√
2s)e−2iA2

0τ

s = z/l

ψ(s, τ) = N
l2

√
−a
2π sech

(
aNs

l

)
e−ρ2/2e−ivρτ
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 phonon instability

i! ∂

∂t
Ψ(r, t) =

[
− !2

2m
∇2 + V (r) + g|Ψ(r, t)|2 +

∫
dr′Vd(r− r′)|Ψ(r′, t)|2

]
Ψ(r, t)

At sufficiently low temperature, the physics of dipolar BEC 
can be described by a nonlinear Schrodinger equation.

Also assume that all dipoles are oriented along the axis so 
that DDI:                                      .It can be shown that in 
this 3D case, there exist low momentum excitation, called 
phonon instablity(PI), leading to condensate collapse.

Vd(R) = (d2/R3)(1− 3 cos2 θ)

PRL. 85, 1791(2000), PRL. 101,080401(2008)
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Phonon Instability with Respect to Soliton Formation
in Two-Dimensional Dipolar Bose-Einstein Condensates

R. Nath,1 P. Pedri,2 and L. Santos1

1Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstr. 2, D-30167, Hannover, Germany
2Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre at Marie Curie,

case courier 121, 4 place Jussieu, 75252 Paris Cedex, France
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The partially attractive character of the dipole-dipole interaction leads to phonon instability in dipolar

Bose-Einstein condensates, which is followed by collapse in 3D geometries. We show that in 2D, the

nature of the post-instability dynamics is fundamentally different, due to the stabilization of 2D solitons.

As a result, a transient gas of attractive solitons is formed, and collapse may be avoided. In the presence of

an harmonic trap, the post-instability dynamics is characterized by a transient pattern formation followed

by the creation of stable 2D solitons. This dynamics should be observable in ongoing experiments,

allowing for the creation of stable 2D solitons for the first time ever in quantum gases.

DOI: 10.1103/PhysRevLett.102.050401 PACS numbers: 05.30.Jp, 03.75.Lm, 05.45.Yv

Recent experiments on atoms with large magnetic mo-
ments [1–4], polar molecules [5], and spinor Bose-Einstein
condensates (BECs) [6] are attracting major interest to the
physics of dipolar gases. In these gases, the dipole-dipole
interaction (DDI) plays a significant or even dominant role
when compared to the short-range isotropic interactions,
which up to now have played the major role in the physics
of ultra cold gases. The DDI is long-range and anisotropic,
being partially attractive. As a consequence, dipolar gases
present a rich new physics for Bose gases [7–9], Fermi
gases [10], spinor gases [11], strongly-correlated gases
[12], and quantum information [13].

BEC stability is an issue of obvious concern in the
presence of attractive interactions. Two dimensional (2D)
and three dimensional (3D) homogeneous short-range in-
teracting BECs with attractive interactions (s-wave scat-
tering length a < 0) are unstable against collapse. The
presence of a trap may stabilize an attractive BEC for a
sufficiently small number of particles [14,15], whereas a
sufficiently large interaction energy leads again to self-
similar collapse [16] followed by intermittent implosion
and pattern formation [17], strikingly similar to a super-
nova implosion [18]. On the contrary, in 1D BECs, non-
linearity is always compensated by quantum dispersion
resulting in stable bright solitons [19].

The anisotropic character of the DDI results in nontrivial
BEC stability conditions when the DDI is sufficiently large
compared to the short-range interactions. In particular, 3D
homogeneous dipolar BECs have unstable low momenta
excitations (phonon instability) [7]. In trapped gas, this
instability leads to condensate collapse resembling short-
range interacting gases, although the post-collapse dynam-
ics is qualitatively different, being characterized by
quadrupole-like patterns [3].

Because of the anisotropy of the DDI, the gas instability
largely depends on the trap geometry. Disc-shaped traps

surpassing a critical aspect ratio have been recently shown
to prevent phononlike instabilities if the dipoles are ori-
ented orthogonal to the trap plane [2]. In that case, how-
ever, a sufficiently large dipole moment may lead to the
rotonization of the Bogoliubov spectrum [8], which even-
tually leads to local collapses [20], or stabilized modulated
density profiles in sufficiently small traps [21].
Phonon instability (PI) in 2D traps is present if the

dipoles are oriented parallel to the trap plane. The long-
range anisotropic character of the DDI leads to the physi-
cally very relevant question of how dimensionality affects
the post-PI dynamics, and, in particular, whether 2D PI is
necessarily followed by collapse. In this Letter, we show
that PI in 2D dipolar BECs does not necessarily lead to
collapse, hence differing qualitatively from the post-PI
dynamics in 2D and 3D short-range interacting BECs,
and 3D dipolar ones. The absence of collapse is explained
by the formation of stable inelastic 2D bright solitons,
whose stability results from the long-range character of
the DDI [22–25], being unstable in short-range interacting
BECs [26]. As a consequence, 2D PI is followed by the
transient formation of a gas of 2D solitons, which resem-
bles the formation of soliton trains in unstable BECs with
a < 0 [19]. However, contrary to the latter case, 2D dipolar
solitons attract each other, and scatter inelastically [27],
eventually fusing into larger solitons, which collapse only
if the number of particles per soliton surpasses a critical
value. We also show that in the presence of an in-plane
harmonic confinement, 2D phononlike instability is fol-
lowed by a transient pattern formation and the subsequent
creation of stable solitons. Interestingly, the 2D post-
instability dynamics may be easily observed in ongoing
experiments, allowing for the creation of 2D stable solitons
for the first time in quantum gases.
In the following, we consider a BEC of particles with

mass m and electric dipole d (the results are equally valid

PRL 102, 050401 (2009) P HY S I CA L R EV I EW LE T T E R S
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 PI in 2D?

Unlike in 3D, 2D PI does not necessarily lead to   
condensate collapse. Instead, the absence is explained by 
the formation of 2D bright solitons. 
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 solitons in 2D?
But does there exist soliton-like solution in 2D in the 
presence of DDI?

As proposed in literature,  2D solitary wave is stabilized 
by the DDI:

!!~r; t" # !0

!
x
bx
;
y
by
;
z
bz

"
ei!xx

2$i!yy2$i!zz2 ; (7)

where fbi!t";!i!t"g, i # x; y; z, are time-dependent pa-
rameters, and insert this ansatz into the corresponding
Lagrangian density

L# i@
2
!! _!%& _!!%"$ @2

2m
jr!j2$1

2
m!2

zz2j!! ~r;t"j2

$gc
2
j!! ~r;t"j4$1

2
j!! ~r;t"j2

Z
d~r0Vd!~r& ~r0"j!! ~r0;t"j2:

(8)

After integrating L # R
d~rL, we obtain the corresponding

Euler-Lagrange equations for fbi!t";!i!t"g. Linearizing
these equations around the stationary solution obtained
from Eqs. (4) and (5), we obtain the expressions for the
frequencies of the lowest-lying modes [30]. A typical
behavior of the lowest modes as a function of ! is depicted
in Fig. 1. The lowest-lying mode has for any value of ! a
breathing character. For sufficiently small values of j!j, the
frequency of the breathing mode tends to zero, and even-
tually the system becomes unstable against expansion. This
corresponds to the disappearance of the minimum in the
inset in Fig. 1. In this regime, the 2D picture provides a
good description of the physics of the problem, as shown in
Fig. 1. For sufficiently large values of j!j, the 3D character
of the system becomes crucial, leading to a different sort of
instability, in this case against 3D collapse. This is reflected
in the decrease of the frequency of the breathing mode.
Hence, as expected from general arguments for nonlocal
nonlinearity [24], the dipolar interaction can stabilize the
2D SW. However, a new crucial feature is introduced by
the anisotropic character of the dipolar interaction, since
too large dipolar interactions can destabilize the SWs.

As shown in Fig. 1, a 2D calculation offers a good
description of the problem for sufficiently small values of
j!j. In the 2D case, the system can be considered as
‘‘frozen’’ into the ground state ’0!z" of the harmonic
oscillator in the z direction, and, hence, the BEC wave

function factorizes as !!~r" #  ! ~""’0!z". Employing this
factorization, the convolution theorem, the Fourier trans-
form of the dipole potential, ~Vd!k" # !4#=3"!3k2z=k2 & 1",
and integrating over the z direction, we arrive at the 2D
NLSE:
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where ~n is the Fourier transform of n! ~"" # j ! ~""j2, and
h2D!k" # 2–3

$$$$
#

p
kek

2
erfc!k", with erfc!x" the complemen-

tary error function. Below, we employ Eq. (9) to analyze
numerically the dynamics of 2D SWs.

Up to now, we have analyzed a single localized wave,
showing that a stable SW may exist under proper condi-
tions. In order to deepen our understanding of the 2D SWs,
and their comparison with the solitons in a 1D NLSE, we
have analyzed the scattering of two SWs for different
values of their initial center-of-mass kinetic energy Ekin.
Direct numerical simulations of the 2D nonlocal NLSE
show that the scattering of dipolar 2D SWs is inelastic. In
particular, as shown in Fig. 2, for sufficiently slow local-
ized waves (for the case considered in Fig. 2, Ekin )
2:9jESj), two SWs merge when colliding. As observed in
Fig. 2, the solitary waves, when approaching, transfer their
center-of-mass kinetic energy into internal energy, trans-
forming into a single localized structure. This structure,
although localized, is in an excited state, and clear oscil-
lations may be observed. For larger initial kinetic energies,
the waves move apart from each other after the collision,
but the transfer of kinetic energy into internal energy is
enough to unbind the SW, and the SWs are destroyed. This

FIG. 2 (color online). Density plot of the fusion of two dipolar
2D SWs for ~g # 20, ! # &0:5, and ~k # 0:01. From top to
bottom: !zt=2 # 0; 1000; 2000; 3000; 4000; 5000.
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function of !. 2D results are shown in thin lines. Inset: E!$" for
~g # 500, and ! # &0:10 (dashed line) and ! # &0:20 (solid
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Ψ0(r) =
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π3/4l3/2
z LρL
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2
ρ
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2l2zL
2
z

)

β = gd/d

|β| = 0.1

|β| = 0.2

|β| > 3/8π
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 why PI in 2D is stable?
Consider the homogeneous dipolar BEC in the x-y plane, 
with a strong harmonic confinement in the z direction. 
The system can be considered “frozen” into the ground 
state        , thus the factorization of the wave function: φ0(z)

Factorization+Convolution theorem+ Fourier transform
+Bogoliubov equation leads to the final dispersion: 

Ψ(!r) = ψ(!ρ)φ0(!z)

ε(k)2 = E2
k +

2gn0Ek√
2πlz

[
1 +

4πβ

3
h2D

(
klz√

2

)]
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 orientation of dipoles
In the 2D case, the orientation of dipole plays an 
important role. 

h2D,‖(!κ) = −1 + 3
√

π/2(κ2
x/k)eκ2

erfc(κ)

h2D,⊥(!κ) = 2− 3
√

πeκ2
erfc(κ)

In the perp(  ) configuration, stable bright solitons are 
possible for g>0 if                 , which is the same 
condition for the formation of 2D soliton. This stable 
soliton can be shown to be isotropic.

⊥
β < −3/8π
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 orientation of dipoles
In the parallel(  ) configuration, the calculated stable 
condition is:                   . However, another constraint 
should be imposed.

β > 3/4π

the anisotropic solitons. A Gaussian ansatz on the xy-plane
with unequal widths Lx;y, shows the appearance of a mini-
mum in the energy functional EðLx; LyÞ [24]. However, for
!> 3=4", there is a critical universal value ~gcrð!Þ #
gNcr=

ffiffiffiffiffiffiffi
2"

p
lz (see Fig. 2) such that for N >Ncr, the mini-

mum of EðLx; LyÞ disappears. As a consequence, contrary
to the case of isotropic solitons, which are always stable as
long as the soliton is 2D, there is a critical number of
particles per soliton, Ncr, which decreases for larger !.

Beyond this number, the 2D soliton collapses. This result is
also verified by a direct simulation of the 3D NLSE (1).
Using Eq. (2), we observed the creation of a gas of

anisotropic solitons from a homogeneous solution, after
the initial formation of stripes along the dipole axis
(Fig. 1). The anisotropic in-plane DDI makes the inelastic
dynamics of anisotropic solitons more complicated, since
solitons fuse together and become unstable against 2D
collapse once N >Ncr per soliton.
In the final part, we consider an harmonic trap on the

xy-plane, Vð#Þ ¼ m!2
##

2=2. As an initial condition, we
consider a BEC in the Thomas-Fermi regime (sufficiently
large g), obtained for the ? -configuration with !> 0 (no
PI) by imaginary time evolution of Eq. (2). As above, we
multiply the wave function by a tiny random phase. To
trigger the phononlike instability in real time evolutions, at
time t ¼ 0, we may either (i) switch to !< 0 (keeps the
polar symmetry) or (ii) tilt the dipole switching into the
jj-configuration (violating the polar symmetry).
Figures 3 illustrate the case (i). The phononlike insta-

bility is followed by transient ring-shaped structures [31].
The trap leads to successive shrinkings and expansions of
the rings, which oscillate in the trap. This process contin-
ues until the rings merge into a single excited soliton. We
have observed that for sufficiently shallow traps, the ring
structures develop azimuthal instability, which leads to 2D
bright solitons, recovering, as expected, the homogeneous
case. The case (ii) is illustrated in Figs. 4. An initial
anisotropic ringlike structure breaks into a pair of aniso-
tropic clouds, which eventually merge into the trap center
forming a single stable bright soliton, which as expected is
anisotropic, being more elongated in the dipole x-direction.
Note that for both (i) and (ii), the nondissipative character
of the problem implies that the solitons are produced in an
excited internal state.
Summarizing, we have shown that the post-PI dynamics

of a 2D dipolar BEC differs qualitatively from 2D and 3D
short-range interacting gases, and 3D dipolar BECs.
Contrary to these cases, the PI is not necessarily followed
by the collapse of the gas, but on the contrary, leads to a
transient regime characterized by the formation of a gas of
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There is a critical value   
such that for N>Nc, the 
minimum of the energy 
functional disappears.

g̃c(β) ≡ gNc/
√

2πlz

g̃c(β)

‖
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the anisotropic solitons. A Gaussian ansatz on the xy-plane
with unequal widths Lx;y, shows the appearance of a mini-
mum in the energy functional EðLx; LyÞ [24]. However, for
!> 3=4", there is a critical universal value ~gcrð!Þ #
gNcr=

ffiffiffiffiffiffiffi
2"

p
lz (see Fig. 2) such that for N >Ncr, the mini-

mum of EðLx; LyÞ disappears. As a consequence, contrary
to the case of isotropic solitons, which are always stable as
long as the soliton is 2D, there is a critical number of
particles per soliton, Ncr, which decreases for larger !.

Beyond this number, the 2D soliton collapses. This result is
also verified by a direct simulation of the 3D NLSE (1).
Using Eq. (2), we observed the creation of a gas of

anisotropic solitons from a homogeneous solution, after
the initial formation of stripes along the dipole axis
(Fig. 1). The anisotropic in-plane DDI makes the inelastic
dynamics of anisotropic solitons more complicated, since
solitons fuse together and become unstable against 2D
collapse once N >Ncr per soliton.
In the final part, we consider an harmonic trap on the

xy-plane, Vð#Þ ¼ m!2
##

2=2. As an initial condition, we
consider a BEC in the Thomas-Fermi regime (sufficiently
large g), obtained for the ? -configuration with !> 0 (no
PI) by imaginary time evolution of Eq. (2). As above, we
multiply the wave function by a tiny random phase. To
trigger the phononlike instability in real time evolutions, at
time t ¼ 0, we may either (i) switch to !< 0 (keeps the
polar symmetry) or (ii) tilt the dipole switching into the
jj-configuration (violating the polar symmetry).
Figures 3 illustrate the case (i). The phononlike insta-

bility is followed by transient ring-shaped structures [31].
The trap leads to successive shrinkings and expansions of
the rings, which oscillate in the trap. This process contin-
ues until the rings merge into a single excited soliton. We
have observed that for sufficiently shallow traps, the ring
structures develop azimuthal instability, which leads to 2D
bright solitons, recovering, as expected, the homogeneous
case. The case (ii) is illustrated in Figs. 4. An initial
anisotropic ringlike structure breaks into a pair of aniso-
tropic clouds, which eventually merge into the trap center
forming a single stable bright soliton, which as expected is
anisotropic, being more elongated in the dipole x-direction.
Note that for both (i) and (ii), the nondissipative character
of the problem implies that the solitons are produced in an
excited internal state.
Summarizing, we have shown that the post-PI dynamics

of a 2D dipolar BEC differs qualitatively from 2D and 3D
short-range interacting gases, and 3D dipolar BECs.
Contrary to these cases, the PI is not necessarily followed
by the collapse of the gas, but on the contrary, leads to a
transient regime characterized by the formation of a gas of
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lz, where for N >Ncr, the soliton is

unstable against collapse even for !> 3=4".
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formation of 2D solitons 

the perp(  ) configuration

the parallel(  ) configuration

⊥

‖
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• In the perp configuration, the isotropic 
solitons are stable as long as the system 
remains effectively in 2D and 

• In the parallel configuration, the anisotropic 
soliton may collapse when surpassing a 
critical number of particles per soliton even 
β > 3/4π

β < −3/8π

 summary
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 comment

• Does physical soliton exist?

• Soliton is everywhere?

• A debt concerning solitons in biological 
molecules

a physical system is never described by an 
equation having true soliton solution
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