PROOF OF ORE'S THEOREM

CHING-HAO, WANG

1. Ore's Theorem

In this note, we prove the following result:

Theorem 1. Suppose that G is a simple graph with n vertices, $n \ge 3$ and $deg(x) + deg(y) \ge n$ whenever x and y are non-adjacent vertices in G, then G has a Hamilton circuit.

Proof. We prove by contradiction:

(a)Suppose that $\deg(x) + \deg(y) \ge n$ for every pair of nonadjacent vertices x and y in G. If G does not have a Hamilton circuit, continue as long as possible in adding missing edges to G(since G is not necessarily a complete graph) one at a time in such a way that we do not obtain a graph with a Hamilton circuit. This cannot go on forever, because once we've formed the complete graph by adding all missing edges, there's a Hamilton circuit. Whenever the process stops, we have obtained a (necessarily non-complete) graph H with the desired property.

(b) If we add one more edge to H, this produce a Hamilton circuit, which uses all added edges. The path consisting of this circuit with the added edge omitted is the Hamilton path in H.

(c) Let $v_1, v_2, \dots v_n$ be a Hamilton path in H. Clearly v_1 and v_n are not adjacent in H, because H has no Hamilton circuit. Therefore they are not adjacent in G. By hypothesis,

$$\deg(v_1) + \deg(v_n) \ge n$$

We rewrite in the other form,

$$(n-1) - \deg(v_n) \le \deg(v_1) - 1$$

, the left-hand-side(LHS) is just the number of vertices not adjacent to v_n (not include v_n itself).

(d) Let S be the set of vertices preceding each vertex adjacent to v_1 in the Hamilton path. Because there's no vertex following v_n , so $v_n \notin S$. Each one of the deg (v_1) vertices adjacent to v_1 gives rise to one element in S. So $|S| = \text{deg}(v_1)$

(e) By (c), there are at most $\deg(v_1) - 1$ vertices other than v_n not adjacent to v_n , and by (d) there are $\deg(v_1)$ vertices in S, none of which is v_n . Therefore at least one vertex of S is adjacent to v_n (since each of the $\deg(v_1)$ vertices in S is either *adjacent* or *not adjacent* to v_n , but there are *at most* $\deg(v_1) - 1$ vertices

Date: June 18, 2009.

CHING-HAO,WANG

not adjacent to v_n). Let v_k be such an vertex and, by definition, H contains the edges $\{v_k v_n\}, \{v_{k+1}v_1\}$, where $1 < k < n_1$.

(f) Now $v_1, v_2, \dots, v_{k-1}, v_k, v_n, v_{n-1}, \dots, v_{k+1}, v_1$ is a Hamilton circuit in H, which contradicts our construction of H. Therefore our assumption that G did not originally have a Hamilton circuit is wrong, and our proof by contradiction is complete.

References

[1] K. H. Rosen Discrete Mathematics and its applications, 6th ed., McGraw-Hill, 2007

[2] R. P. Grimaldi, Discrete and Combinatorial Mathematics, 5th ed., Addison Wesley, 2004.

Department of Electrical Engineering, National Tsing-Hua University, Hsinchu, Taiwan, R.O.C., 30013