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CC
onsider the following puzzle. The goal is to cover
the region

using the following seven tiles.

The region must be covered entirely without any over-
lap. It is allowed to shift and rotate the seven pieces in any
way, but each piece must be used exactly once

One could start by observing that some of the pieces
fit nicely in certain parts of the region. However,
the solution can really only be found through trial and
error.
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For that reason, even though this is an amusing puzzle, it
is not very intriguing mathematically.

This is, in any case, an example of a tiling problem. A
tiling problem asks us to cover a given region using a given
set of tiles completely and without any overlap. Such a
covering is called a tiling. Of course, we will focus our
attention on specific regions and tiles that give rise to
interesting mathematical problems.

Given a region and a set of tiles, there are many different
questions we can ask. Some of the questions that we will
address are the following:

• Is there a tiling?
• How many tilings are there?
• About how many tilings are there?
• Is a tiling easy to find?
• Is it easy to prove that a tiling does not exist?
• Is it easy to convince someone that a tiling does not exist?
• What does a ‘‘typical’’ tiling look like?
• Are there relations among the different tilings?
• Is it possible to find a tiling with special properties, such

as symmetry?

Is There a Tiling?
From looking at the set of tiles and the region we wish to
cover, it is not always clear whether such a task is even
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possible. The puzzle at the beginning of this article is such
a situation. Let us consider a similar puzzle where the tiles,
Solomon Golomb’s polyominoes, are more interesting
mathematically.

A pentomino is a collection of five unit squares arranged
with coincident sides. Pentominoes can be flipped or
rotated freely. The figure shows the 12 different pentomi-
noes. Since their total area is 60, we can ask, for example: Is
it possible to tile a 3 9 20 rectangle using each one of them
exactly once?

This puzzle can be solved in at least two ways. One
solution is shown above. A different solution is obtained if
we rotate the shaded block by 180�. In fact, after spending
some time trying to find a tiling, one discovers that these
(and their rotations and reflections) are the only two pos-
sible solutions.

One could also ask whether it is possible to tile two
6 9 5 rectangles using each pentomino exactly once. One
way of doing it is shown below. There is only one other such
tiling, obtained by rearranging two of the pentominoes; it is a
nice puzzle for the reader to find those two tiles.

Knowing that, one can guess that there are several tilings
of a 6 9 10 rectangle using the 12 pentominoes. However,
one might not predict just how many there are. An
exhaustive computer search has found that there are 2,339
such tilings.

.........................................................................................................................................................
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These questions make nice puzzles, but are not the kind
of interesting mathematical problem that we are looking
for. To illustrate what we mean by this, let us consider a
problem that is superficially somewhat similar, but that is
much more amenable to mathematical reasoning.

Suppose we remove two opposite corners of an 8 9 8
chessboard, and we ask: Is it possible to tile the resulting
figure with 31 dominoes?

Our chessboard would not be a chessboard if its cells
were not colored dark and white alternatingly. As it turns
out, this coloring is crucial in answering the question at
hand.

Notice that, regardless of where it is placed, a domino
will cover one dark and one white square of the board.
Therefore, 31 dominoes will cover 31 dark squares and 31
white squares. However, the board has 32 dark squares and
30 white squares in all, so a tiling does not exist. This is an
example of a coloring argument; such arguments are very
common in showing that certain tilings are impossible.

A natural variation of this problem is to now remove one
dark square and one white square from the chessboard, as
shaded above. Now the resulting board has the same
number of dark squares and white squares; is it possible to
tile it with dominoes?

Let us show that the answer is yes, regardless of which
dark square and which white square we remove. Consider
any closed path that covers all the cells of the chessboard,
like the following one.

Now start traversing the path, beginning with the point
immediately after the dark hole of the chessboard. Cover the
first and second cell of the path with a domino; they are
white and dark, respectively. Then cover the third and fourth

cells with a domino; they are also white and dark, respec-
tively. Continue in this way, until the path reaches the
second hole of the chessboard. Fortunately, this second hole
is white, so there is no gap between the last domino placed
and this hole. We can, therefore, skip this hole and continue
covering the path with successive dominoes. When the path
returns to the first hole, there is again no gap between the last
domino placed and the hole. Therefore, the board is entirely
tiled with dominoes. We now illustrate this procedure.

What happens if we remove two dark squares and two
white squares? If we remove the four squares closest to a
corner of the board, a tiling with dominoes obviously
exists. On the other hand, in the example below, a domino
tiling does not exist, since there is no way for a domino to
cover the upper left square

.
This question is clearly more subtle than the previous

one. The problem of describing which subsets of the
chessboard can be tiled by dominoes leads to some very
nice mathematics. We will say more about this topic in the
Section ‘‘Demonstrating That a Tiling Does Not Exist’’
below.

Let us now consider a more difficult example of a col-
oring argument, to show that a 10 9 10 board cannot be
tiled with 1 9 4 rectangles.

Giving the board a chessboard coloring gives us no
information about the existence of a tiling. Instead, let us
use four colors, as shown above. Any 1 9 4 tile that we
place on this board will cover an even number (possibly
zero) of squares of each color
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.
Therefore, if we had a tiling of the board, the total

number of squares of each color would be even. But there
are 25 squares of each color, so a tiling is impossible.

With these examples in mind, we can invent many similar
situations where a certain coloring of the board makes a
tiling impossible. Let us now discuss a tiling problem that
cannot be solved using such a coloring argument.

Consider the region T(n) consisting of a triangular array
of n(n + 1)/2 unit regular hexagons.

T(1)

T(3)
T(4)

T(2)

Call T(2) a tribone. We wish to know the values of n for
which T(n) can be tiled by tribones. For example, T(9) can
be tiled as follows.

Sinceeach tribone covers 3 hexagons, n(n + 1)/2must be
a multiple of 3 for T(n) to be tileable. However, this does not
explain why regions such as T(3) and T(5) cannot be tiled.

Conway and Lagarias [3, 21] showed that the triangular
array T(n) can be tiled by tribones if and only if n = 12k,
12k + 2, 12k + 9 or 12k + 11 for some k� 0: The
smallest values of n for which T(n) can be tiled are 0, 2,
9, 11, 12, 14, 21, 23, 24, 26, 33 and 35. Their proof uses a
certain nonabelian group that detects information about
the tiling that no coloring can detect, while coloring
arguments can always be rephrased in terms of abelian
groups. In fact, it is possible to prove that no coloring
argument can establish the result of Conway and Lagarias
[16].

Counting Tilings, Exactly
Once we know that a certain tiling problem can be
solved, we can go further and ask: How many solutions
are there?

As we saw earlier, there are 2,339 ways (up to symme-
try) to tile a 6 9 10 rectangle using each one of the 12
pentominoes exactly once. It is perhaps interesting that this
number is so large, but the exact answer is not so inter-
esting, especially since it was found by a computer search.

The first significant result on tiling enumeration was
obtained independently in 1961 by Fisher and Temperley [7]
and by Kasteleyn [12]. They found that the number of tilings
of a 2m 9 2n rectangle with 2mn dominoes is equal to

4mn
Ym

j¼1

Yn

k¼1

cos2 jp
2mþ 1

þ cos2 kp
2nþ 1

� �
:

Here P denotes product, and p denotes 180�, so the number
above is given by 4mn times a product of sums of two
squares of cosines, such as

cos
2p
5
¼ cos 72� ¼ 0:3090169938. . . :

This is a remarkable formula! The numbers we are multi-
plying are not integers; in most cases, they are not even
rational numbers. When we multiply these numbers we
miraculously obtain an integer, and this integer is exactly
the number of domino tilings of the 2m 9 2n rectangle.

For example, for m = 2 and n = 3, we get:

46ðcos236� þ cos225:71. . .�Þ � ðcos236� þ cos251:43. . .�Þ
� ðcos236� þ cos277:14. . .�Þ � ðcos272� þ cos225:71. . .�Þ
� ðcos272� þ cos251:43. . .�Þ � ðcos272� þ cos277:14. . .�Þ
¼ 46ð1:4662. . .Þð1:0432. . .Þð0:7040. . .Þ
� ð0:9072. . .Þð0:4842. . .Þð0:1450. . .Þ ¼ 281:

Skeptical readers with a lot of time to spare are invited to
find all domino tilings of a 4 9 6 rectangle and check that
there are, indeed, exactly 281 of them.

Let us say a couple of words about the proofs of this
result. Kasteleyn expressed the answer in terms of a certain
Pfaffian, and reduced its computation to the evaluation of a
related determinant. Fisher and Temperley gave a different
proof using the transfer matrix method, a technique often
used in statistical mechanics and enumerative combi-
natorics.

There is a different family of regions for which the
number of domino tilings is surprisingly simple. The Aztec
diamond AZ(n) is obtained by stacking successive centered
rows of length 2, 4, ..., 2n, 2n, . . ., 4, 2, as shown.

AZ(3) AZ(7)AZ(2)AZ(1)

The Aztec diamond AZ(2) of order 2 has the following 8
tilings:
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Elkies, Kuperberg, Larsen and Propp [6] showed that the
number of domino tilings of AZ(n) is 2n(n+1)/2. The fol-
lowing table shows the number of tilings of AZ(n) for the
first few values of n

1 2 3 4 5 6

2 8 64 1024 32768 2097152

Since 2(n+1)(n+2)/2/2n(n+1)/2 = 2n+1, one could try to
associate 2n+1 domino tilings of the Aztec diamond of
order n + 1 to each domino tiling of the Aztec diamond
of order n, so that each tiling of order n + 1 occurs
exactly once. This is one of the four original proofs found
in [6]; there are now around 12 proofs of this result. None
of these proofs is quite as simple as the answer 2n(n+1)/2

might suggest.

Counting Tilings, Approximately
Sometimes we are interested in estimating the number of
tilings of a certain region. In some cases, we will want to
do this, because we are not able to find an exact formula.
In other cases, somewhat paradoxically, we might prefer
an approximate formula over an exact formula. A good
example is the number of domino tilings of a rectangle.
We have an exact formula for this number, but this for-
mula does not give us any indication of how large this
number is.

For instance, since Aztec diamonds are ‘‘skewed’’
squares, we might wonder: How do the number of domino
tilings of an Aztec diamond and a square of about the same
size compare? After experimenting a bit with these shapes,
one notices that placing a domino on the boundary of an
Aztec diamond almost always forces the position of several
other dominoes. This almost never happens in the square.
This might lead us to guess that the square should have
more tilings than the Aztec diamond.

To try to make this idea precise, let us make a definition.
If a region with N squares has T tilings, we will say that it

has
ffiffiffiffiffiffiffiffiffiffi
½N �T

p
degrees of freedom per square. The motivation,

loosely speaking, is the following: If each square could
decide independently how it would like to be covered, and

it had
ffiffiffiffiffiffiffiffiffiffi
½N �T

p
possibilities to choose from, then the total

number of choices would be T.
The Aztec diamond AZ(n) consists of N = 2n(n + 1)

squares, and it has T = 2n(n+1)/2 tilings. Therefore,
the number of degrees of freedom per square in AZ(n)
is:

ffiffiffiffiffiffiffiffiffiffi
½N �T

p
¼

ffiffiffiffiffi
42
p

¼ 1:189207115. . .

For the 2n 9 2n square, the exact formula for the number
of tilings is somewhat unsatisfactory, because it does not
give us any indication of how large this number is. For-
tunately, as Kasteleyn, Fisher and Temperley observed,
one can use their formula to show that the number of
domino tilings of a 2n 9 2n square is approximately
C4n^2, where

C ¼ eG=p

¼ 1:338515152. . .:

Here G denotes the Catalan constant, which is defined as
follows:

G ¼ 1� 1

32
þ 1

52
� 1

72
þ � � �

¼ 0:9159655941. . .:

Thus, our intuition was correct. The square board is
‘‘easier’’ to tile than the Aztec diamond, in the sense that it
has approximately 1.3385. . . degrees of freedom per
square, while the Aztec diamond has 1.1892. . ..

Demonstrating That a Tiling Does Not Exist
As we saw in the Section entitled ‘‘Is There a Tiling?’’,
there are many tiling problems where a tiling exists, but
finding it is a difficult task. However, once we have
found it, it is very easy to demonstrate its existence to
someone: We can simply show them the tiling!

Can we say something similar in the case where a tiling
does not exist? As we also saw in the Section entitled ‘‘Is
There a Tiling?’’, it can be difficult to show that a tiling does
not exist. Is it true, however, that if a tiling does not exist,
then there is an easy way of demonstrating that to
someone?

In a precise sense, the answer to this question is almost
certainly no in general, even for tilings of regions using
1 9 3 rectangles [1]. Surprisingly, though, the answer is yes
for domino tilings!

Before stating the result in its full generality, let us
illustrate it with an example. Consider the following region
consisting of 16 dark squares and 16 white squares. (The
shaded cell is a hole in the region.)

One can use a case-by-case analysis to become con-
vinced that this region cannot be tiled with dominoes.
Knowing this, can we find an easier, faster way to convince
someone that this is the case?

One way of doing it is the following. Consider the 6
dark squares marked with a •. They are adjacent to a total
of 5 white squares, which are marked with an *. We
would need 6 different tiles to cover the 6 marked dark
squares, and each one of these tiles would have to cover
one of the 5 marked white squares. This makes a tiling
impossible.
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Philip Hall [10] showed that in any region that cannot
be tiled with dominoes, one can find such a demonstra-
tion of impossibility. More precisely, one can find k cells
of one color which have fewer than k neighbors. There-
fore, to demonstrate to someone that tiling the region is
impossible, we can simply show them those k cells and
their neighbors!

Hall’s statement is more general than this and is com-
monly known as the marriage theorem. The name comes
from thinking of the dark cells as men and the white cells
as women. These men and women are not very adven-
turous: They are only willing to marry one of their
neighbors. We are the matchmakers; we are trying to find
an arrangement in which everyone can be happily mar-
ried. The marriage theorem tells us exactly when such an
arrangement exists.

Tiling Rectangles with Rectangles
One of the most natural tiling situations is that of tiling a
rectangle with smaller rectangles. We now present three
beautiful results of this form.

The first question we wish to explore is: When can an
m 9 n rectangle be tiled with a 9 b rectangles (in any
orientation)? Let us start this discussion with some moti-
vating examples.

Can a 7 9 10 rectangle be tiled with 2 9 3 rectangles?
This is clearly impossible, because each 2 9 3 rectangle
contains 6 squares, while the number of squares in a 7 9 10
rectangle is 70, which is not a multiple of 6. For a tiling to
be possible, the number of cells of the large rectangle must
be divisible by the number of cells of the small rectangle. Is
this condition enough?

Let us try to tile a 17 9 28 rectangle with 4 9 7 rectan-
gles. The argument of the previous paragraph does not
apply here; it only tells us that the number of tiles needed is
17. Let us try to cover the left-most column first.

Our first attempt failed. After covering the first 4 cells of
the column with the first tile, the following 7 cells with the
second tile, and the following 4 cells with the third tile,
there is no room for a fourth tile to cover the remaining two
cells. In fact, if we manage to cover the 17 cells of the first
column with 4 9 7 tiles, we will have written 17 as a sum of
4 s and 7 s. But it is easy to check that this cannot be done,
so a tiling does not exist. We have found a second reason
for a tiling not to exist: It may be impossible to cover the
first row or column, because either m or n cannot be
written as a sum of a s and b s.

Is it then possible to tile a 10 9 15 rectangle using 1 9 6
rectangles? In fact, 150 is a multiple of 6, and both 10 and 15
can be written as a sum of 1 s and 6 s. However, this tiling
problem is still impossible!

The full answer to our question was given by de Bruijn
and by Klarner [4, 13]. They proved that an m 9 n rectangle
can be tiled with a 9 b rectangles if and only if:

• mn is divisible by ab,
• the first row and column can be covered; i.e., both m and

n can be written as sums of a s and b s, and
• either m or n is divisible by a, and either m or n is

divisible by b.

Since neither 10 nor 15 is divisible by 6, the 10 9 15
rectangle cannot be tiled with 1 9 6 rectangles. There are
now many proofs of de Bruijn and Klarner’s theorem. A
particularly elegant one uses properties of the complex
roots of unity [4, 13]. For an interesting variant with four-
teen (!) proofs, see [20].

The second problem we wish to discuss is the following.
Let x [ 0, such as x ¼

ffiffiffi
2
p

. Can a square be tiled with
finitely many rectangles similar to a 1 9 x rectangle (in any
orientation)? In other words, can a square be tiled with
finitely many rectangles, all of the form a 9 ax (where a
may vary)?

For example, for x = 2/3, some of the tiles we can use
are the following.

1.5

1 3

2 4

6 3π

2π

They have the same shape, but different sizes. In this
case, however, we only need one size, because we can tile
a 2 9 2 square with six 1 9 2/3 rectangles.

1 1

x = 2/3

2/3

2/3

For reasons which will become clear later, we point out
that x = 2/3 satisfies the equation 3x - 2 = 0. Notice also
that a similar construction will work for any positive
rational number x = p/q.?
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Let us try to construct a tiling of a square with similar
rectangles of at least two different sizes. There is a tiling
approximately given by the picture below. The rectangles
are similar because 0.7236. . ./1 = 0.2/0.2764. . ...

1/5

.2764...

.7236...

1

How did we find this configuration? Suppose that we
want to form a square by putting five copies of a rectangle
in a row, and then stacking on top of them a larger rect-
angle of the same shape on its side, as shown. Assume that
we know the square has side length 1, but we do not know
the dimensions of the rectangles. Let the dimensions of the
large rectangle be 1 9 x. Then the height of each small
rectangle is equal to 1 - x. Since the small rectangles are
similar to the large one, their width is x(1 - x). Sitting
together in the tiling, their total width is 5x(1 - x), which
should be equal to 1.

Therefore, the picture above is a solution to our prob-
lem if x satisfies the equation 5x(1 - x) = 1, which we
rewrite as 5x2 - 5x + 1 = 0. One value of x that satisfies
this equation is

x ¼ 5þ
ffiffiffi
5
p

10
¼ 0:7236067977. . .;

giving rise to the tiling illustrated above.
But recall that any quadratic polynomial has two zeros;

the other one is

x ¼ 5�
ffiffiffi
5
p

10
¼ 0:2763932023. . .;

and it gives rise to a different tiling that also satisfies the
conditions of the problem.

It may be unexpected that our tiling problem has a
solution for these two somewhat complicated values of x.
In fact, the situation can get much more intricate. Let us find
a tiling using 3 similar rectangles of different sizes.

1

x = .5698...

.4302...

.2451... .7549...

Say that the largest rectangle has dimensions 1 9 x.
Imitating the previous argument, we find that x satisfies the
equation

x3 � x2 þ 2x � 1 ¼ 0:

One value of x that satisfies this equation is

x ¼ 0:5698402910. . . :

For this value of x, the tiling problem can be solved as
above. The polynomial above has degree three, so it
has two other zeros. They are approximately 0:215þ
1:307

ffiffiffiffiffiffiffi
�1
p

and 0:215� 1:307
ffiffiffiffiffiffiffi
�1
p

. These two complex
numbers do not give us real solutions to the tiling problem.

In the general situation, Freiling and Rinne [8] and
Laczkovich and Szekeres [14] independently gave the fol-
lowing amazing answer to this problem. A square can be
tiled with finitely many rectangles similar to a 1 9 x rect-
angle if and only if:

• x is a zero of a polynomial with integer coefficients, and
• for the polynomial of least degree satisfied by x, any zero

aþ b
ffiffiffiffiffiffiffi
�1
p

satisfies a [ 0.

It is very surprising that these complex zeros, that seem
completely unrelated to the tiling problem, actually play a
fundamental role in it. In the example above, a solution for
a 1 9 0.5698. . . rectangle is only possible because 0.215. . .
is a positive number. Let us further illustrate this result with
some examples.

The value x ¼
ffiffiffi
2
p

does satisfy a polynomial equation
with integer coefficients, namely, x2 - 2 = 0. However,
the other root of the equation is �

ffiffiffi
2
p

\0 . Thus, a square
cannot be tiled with finitely many rectangles similar to a
1�

ffiffiffi
2
p

rectangle.
On the other hand, x ¼

ffiffiffi
2
p
þ 17

12 satisfies the quadratic
equation 144x2 - 408x + 1 = 0, whose other root is
�

ffiffiffi
2
p
þ 17

12 ¼ 0:002453 � � � [ 0. Therefore, a square can be
tiled with finitely many rectangles similar to a 1� ð

ffiffiffi
2
p
þ 17

12Þ
rectangle. How would we actually do it?

Similarly, x ¼
ffiffiffi
23
p

satisfies the equation x3 - 2 = 0. The
other two roots of this equation are �

ffiffi
23
p

2 �
ffiffi
23
p ffiffi

3
p

2

ffiffiffiffiffiffiffi
�1
p

: Since
�
ffiffi
23
p

2 \0, a square cannot be tiled with finitely many rect-
angles similar to a 1�

ffiffiffi
23
p

rectangle.
Finally, let r/s be a rational number, and let x ¼ r

s þ
ffiffiffi
23
p

.
One can check that this is still a zero of a cubic polynomial,
whose other two zeros are:

r

s
�

ffiffiffi
23
p

2

� �
�

ffiffiffi
23
p ffiffiffi

3
p

2

ffiffiffiffiffiffiffi
�1
p

:

It follows that a square can be tiled with finitely many rect-
angles similar to a 1� ðrs þ

ffiffiffi
23
p
Þ rectangle if and only if

r

s
[

ffiffiffi
23
p

2
:

As a nice puzzle, the reader can pick his or her favorite
fraction larger than

ffiffiffi
23
p

=2 , and tile a square with rectangles
similar to a 1� ðrs þ

ffiffiffi
23
p
Þ rectangle.

For other tiling problems, including interesting algebraic
arguments, see [18].

The third problem we wish to discuss is motivated by
the following remarkable tiling of a rectangle into nine
squares, all of which have different sizes. (We will soon see
what the sizes of the squares and the rectangle are.) Such
tilings are now known as perfect tilings.

� 2010 Springer Science+Business Media, LLC



a

b c

d
e

f

h

i
g

To find perfect tilings of rectangles, we can use the
approach of the previous problem. We start by proposing a
tentative layout of the squares, such as the pattern shown,
without knowing what sizes they have. We denote the side
length of each square by a variable. For each horizontal line
inside the rectangle, we write the following equation: The
total length of the squares sitting on the line is equal to the
total length of the squares hanging from the line. For
example, we have the ‘‘horizontal equations’’ a + d =

g + h and b = d + e. Similarly, we get a ‘‘vertical equation’’
for each vertical line inside the rectangle, such as a = b + d
or d + h = e + f. Finally, we write the equations that say
that the top and bottom sides of the rectangle are equal, and
the left and right sides of the rectangle are equal. In this case,
they are a + b + c = g + i and a + g = c + f + i. It then
remains to hope that the resulting system of linear equations
has a solution and, furthermore, is one where the values of
the variables are positive and distinct. For the layout pro-
posed above, the system has a unique solution up to scaling:
(a, b, c, d, e, f, g, h, i) = (15, 8, 9, 7, 1, 10, 18, 4, 14). The
large rectangle has dimensions 32 9 33.

Amazingly, the resulting system of linear equations
always has a unique solution up to scaling, for any proposed
layout of squares. (Unfortunately, the resulting ‘‘side lengths’’
are usually not positive and distinct.) In 1936, Brooks, Smith,
Stone and Tutte [2] gave a beautiful explanation of this result.
They constructed a directed graph whose vertices are the
horizontal lines found in the rectangle. There is one edge for
each small square, which goes from its top horizontal line to
its bottom horizontal line. The diagram below shows the
resulting graph for our perfect tiling of the 32 9 33 rectangle.
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We can think of this graph as an electrical network of unit
resistors, where the current flowing through each wire is
equal to the length of the corresponding square in the tiling.
The ‘‘horizontal equations’’ for the side lengths of the squares
are equivalent to the equations for conservation of current in
this network, and the ‘‘vertical equations’’ are equivalent to
Ohm’s law. Knowing this, our statement is essentially
equivalent to Kirchhoff’s theorem: The flow in each wire is
determined uniquely, once we know thepotential difference
between some two vertices (i.e., up to scaling).

Brooks, Smith, Stone and Tutte were especially interested
in studying perfect tilings of squares. This also has a nice
interpretation in terms of the network. To find tilings of
squares, we would need an additional linear equation stating
that the vertical and horizontal side lengths of the rectangle
are equal. In the language of the electrical network, this is
equivalent to saying that the network has total resistance 1.

While this correspondence between tilings and networks
is very nice conceptually, it does not necessarily make it easy
to construct perfect tilings of squares, or even rectangles. In
fact, after developing this theory, Stone spent some time
trying to prove that a perfect tiling of a square was impossi-
ble. Roland Sprague finally constructed one in 1939, tiling a
square of side length 4205 with 55 squares. Since then, much
effort and computer hours have been spent trying to find
better constructions.Duijvestijn andhis computer [5] showed
that the smallest possible number of squares in aperfect tiling
of a square is 21; the only such tiling is shown below.
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What Does a Typical Tiling Look Like?
Suppose that we draw each possible solution to a tiling prob-
lem ona sheet of paper, put these sheets of paper in a bag, and
pick one of them at random. Can we predict what we will see?
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The random domino tiling of a 12 9 12 square
shown, with horizonal dominoes shaded darkly and
vertical dominoes shaded lightly, exhibits no obvious
structure. Compare this with a random tiling of the Aztec
diamond of order 50. Here, there are two shades of
horizontal dominoes and two shades of vertical domi-
noes, assigned according to a certain rule not relevant
here. These pictures were created by Jim Propp’s Tilings
Research Group.

.

This very nice picture suggests that something inter-
esting can be said about random tilings. The tiling is
clearly very regular at the corners, and gets more chaotic
as we move away from the edges. There is a well defined
region of regularity, and we can predict its shape. Jock-
usch, Propp and Shor [11] showed that for very large n,
and for ‘‘most’’ domino tilings of the Aztec diamond
AZ(n), the region of regularity ‘‘approaches’’ the outside
of a circle tangent to the four limiting sides. Sophisticated
probability theory is needed to make the terms ‘‘most’’
and ‘‘approaches’’ precise, but the intuitive meaning
should be clear.

This result is known as the Arctic Circle theorem. The
tangent circle is the Arctic Circle; the tiling is ‘‘frozen’’ outside
of it. Many similar phenomena have since been observed
and (in some cases) proved for other tiling problems.

Relations Among Tilings
When we study the set of all tilings of a region, it is often
useful to be able to ‘‘navigate’’ this set in a nice way.
Suppose we have one solution to a tiling problem, and we
want to find another one. Instead of starting over, it is
probably easier to find a second solution by making small
changes to the first one. We could then try to obtain a third
solution from the second one, then a fourth solution, and
so on.

In the case of domino tilings, there is a very easy
way to do this. A flip in a domino tiling consists of
reversing the orientation of two dominoes forming a
2 9 2 square.

This may seem like a trivial transformation to get from
one tiling to another. However, it is surprisingly powerful.
Consider the two following tilings of a region.

Although they look very different from each other, one
can, in fact, reach one from the other by successively flip-
ping 2 9 2 blocks.

Thurston [21] showed that this is a general phenome-
non. For any region R with no holes, any domino tiling of
R can be reached from any other by a sequence of flips.

This domino flipping theorem has numerous applica-
tions in the study of domino tilings. We point out that the
theorem can be false for regions with holes, as shown by
the two tilings of a 3 9 3 square with a hole in the middle.
Here, there are no 2 9 2 blocks and, hence, no flips at all.
There is a version, due to Propp [17], of the domino flip-
ping theorem for regions with holes, but we will not
discuss it here.

Confronting Infinity
We now discuss some tiling questions that involve arbi-
trarily large regions or arbitrarily small tiles.

The first question is motivated by the following identity:

1

1 � 2þ
1

2 � 3þ
1

3 � 4þ � � � ¼ 1:
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Consider infinitely many rectangular tiles of dimensions
1� 1

2 ;
1
2� 1

3 ;
1
3� 1

4 ; . . .: These tiles get smaller and smaller,
and the above equation shows that their total area is exactly
equal to 1. Can we tile a unit square using each one of these
tiles exactly once?

1

1/2 1/3
1/2 1/3

1/4
1/4

1/5
1/5

1/6 ...

1

1

This seems to be quite a difficult problem. An initial
attempt shows how to fit the first five pieces nicely. How-
ever, it is difficult to imagine how we can fit all of the pieces
into the square without leaving any gaps.

1

1/2

1/3

1/2

1/3

1/4

1/5

1/4

1/5
1/6

To this day, no one has been able to find a tiling or
prove that it does not exist. Paulhus [16] has come very
close; he found a way to fit all these rectangles into a
square of side length 1.000000001. Of course, Paulhus’s
packing is not a tiling as we have defined the term, since
there is leftover area.

Let us now discuss a seemingly simple problem
that makes it necessary to consider indeterminately large
regions. Recall that a polyomino is a collection of unit
squares arranged with coincident sides.

Let us call a collection of polyominoes ‘‘good’’ if it is
possible to tile the whole plane using the collection as tiles,
and ‘‘bad’’ otherwise. A good and a bad collection of
polyominoes are shown below.

*
*

*

badgood

It is easy to see why it is impossible to tile the whole
plane with the bad collection shown above. Once we lay
down a tile, the square(s) marked with an asterisk cannot
be covered by any other tile.

However, we can still ask: How large of a square region
can we cover with a tiling? After a few tries, we will find
that it is possible to cover a 4 9 4 square.

It is impossible, however, to cover a 5 9 5 square. Any
attempt to cover the central cell of the square with a tile will
force one of the asterisks of that tile to land inside the
square as well.

In general, the question of whether a given collection of
polyominoes can cover a given square is a tremendously
difficult one. A deep result from mathematical logic states
that there does not exist an algorithm to decide the answer
to this question.1

An unexpected consequence of this deep fact is the
following. Consider all the bad collections of polyominoes
that have a total of n unit cells. Let L(n) be the side length
of the largest square that can be covered with one of them.
The bad collection of our example, which has a total of
22 unit squares, shows that Lð22Þ� 4:

One might expect L(22) to be reasonably small. Given
a bad collection of tiles with a total of 22 squares,
imagine that we start laying down tiles to fit together
nicely and cover as large a square as possible. Since the
collection is bad, at some point we will inevitably form a
hole that we cannot cover. It seems plausible to assume
that this will happen fairly soon, since our tiles are quite
small.

Surprisingly, however, the numbers L(n) are incredi-
bly large! If f(n) is any function that can be computed
on a computer, even with infinite memory, then
L(n) [ f(n) for all large enough n. Notice that

1A related question is the following: Given a polyomino P, does there exist a rectangle that can be tiled using copies of P? Despite many statements to the contrary in

the literature, it is not known whether there exists an algorithm to decide this.
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computers can compute functions that grow very
quickly, such as

f ðnÞ ¼ nn; f ðnÞ ¼ nnn

;or

f ðnÞ ¼ nn : : :
n

ða tower of lengthnÞ; . . .:

In fact, all of these functions are tiny in comparison with
certain other computable functions. In turn, every com-
putable function is tiny in comparison with L(n).

We can give a more concrete consequence of this result.
There exists a collection of polyominoes with a modest
number of unit squares2, probably no more than 100, with
the following property: It is impossible to tile the whole
plane with this collection; however, it is possible to com-
pletely cover Australia3 with a tiling.

A very important type of problem is concerned with
tilings of infinite (unbounded) regions, in particular, tilings
of the entire plane. This is too vast a subject to touch on
here. For further information, we refer the reader to the
700-page book [9] by Grünbaum and Shephard devoted
primarily to this subject.
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[18] S. Stein and S. Szabó. Algebra and tiling. Homomorphisms in the

service of geometry. Mathematical Association of America:

Washington, DC, 1994.

This book discusses the solution of several tiling problems using

tools from modern algebra. Two sample problems are the fol-

lowing: A square cannot be tiled with 30�–60�–90� triangles, and

a square of odd integer area cannot be tiled with triangles of unit

area.

[19] W. Thurston. Conway’s tiling groups. Amer. Math. Monthly 97

(1990), 757–773.

The author presents a technique of Conway’s for studying tiling

problems. Sometimes it is possible to label the edges of the tiles

with elements of a group, so that a region can be tiled if and only if

the product (in order) of the labels on its boundary is the identity

element. The idea of a height function that lifts tilings to a three-

dimensional picture is also presented. These techniques are

applied to tilings with dominoes, lozenges, and tribones.

[20] S. Wagon. Fourteen proofs of a result about tiling a rectangle.

Amer. Math. Monthly 94 (1987), 601–617.

Wagon gives 14 proofs of the following theorem: If a rectangle

can be tiled by rectangles, each of which has at least one integral

side, then the tiled rectangle has at least one integral side.

THE MATHEMATICAL INTELLIGENCER


	Tilings*
	Is There a Tiling?
	Counting Tilings, Exactly
	Counting Tilings, Approximately
	Demonstrating That a Tiling Does Not Exist
	Tiling Rectangles with Rectangles
	What Does a Typical Tiling Look Like?
	Relations Among Tilings
	Confronting Infinity
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


